Back to Blog
Technical Deep Dive
15 min read
Memory Layer Architecture Deep Dive
Vector embeddings, citations, and advanced RAG implementation details.
CognitiveX Team
October 5, 2025
# Memory Layer Architecture Deep Dive
The Memory Layer is the foundation of CognitiveX. This article explores its technical architecture.
Database Design
We use PostgreSQL with pgvector extension:
CREATE TABLE memories (
id UUID PRIMARY KEY,
content TEXT,
embedding vector(1536),
metadata JSONB,
created_at TIMESTAMP
);CREATE INDEX ON memories USING ivfflat (embedding vector_cosine_ops); ```
Embedding Strategy
Multiple embedding approaches:
- **OpenAI text-embedding-3-large**: Best quality
- **Sentence Transformers**: Self-hosted option
- **Custom Fine-tuned**: Domain-specific
Retrieval Pipeline
1. **Query Embedding**: Convert search to vector 2. **Similarity Search**: Find top-k candidates 3. **Reranking**: Use cross-encoder for precision 4. **Citation Extraction**: Link to sources
Optimization Techniques
Caching
Embeddings are cached aggressively:
- **Redis**: Recent embeddings
- **Local Cache**: Frequently used patterns
- **CDN**: Static embeddings
Batching
Process multiple items together:
const embeddings = await batchEmbed(texts, { batchSize: 100 });
Quantization
Reduce vector size without losing quality:
- **PCA Dimensionality Reduction**: 1536 → 768 dimensions
- **Product Quantization**: 10x size reduction
- **Binary Quantization**: Ultimate compression
Performance Numbers
- **Query Latency**: <50ms for most searches
- **Throughput**: 10,000+ queries/second
- **Accuracy**: 95%+ retrieval precision
Future Enhancements
- Multi-modal embeddings (images, code, audio)
- Temporal awareness (time-based relevance)
- Hierarchical memory (different detail levels)
Check our GitHub for implementation details.