Decision Layer

The Decision Layer handles adaptive routing, multi-LLM orchestration, and cost optimization.

decision.route()

Automatically select the best LLM for a given task based on requirements and constraints.

Signature

typescript
route(params: RouteParams): Promise<RouteResponse>

Parameters

NameTypeRequiredDescription
taskstringYesTask description
prioritystringNo“cost” | “quality” | “speed”
constraintsobjectNoBudget, latency limits

Returns

typescript
{
  model: string;           // Selected model
  provider: string;        // LLM provider
  estimatedCost: number;   // Estimated cost in USD
  estimatedLatency: number;// Expected latency in ms
  reasoning: string;       // Why this model was chosen
}

Example

typescript
const route = await client.decision.route({
  task: "Analyze legal document and extract key clauses",
  priority: "quality",
  constraints: {
    maxCost: 0.50,
    maxLatency: 5000
  }
});

console.log('Selected:', route.model);
console.log('Provider:', route.provider);
console.log('Reasoning:', route.reasoning);

// Use the selected model
const result = await client.cognition.reason({
  query: "Analyze document...",
  model: route.model
});

decision.coordinate()

Orchestrate multiple agents to work together on complex tasks.

Example

typescript
const result = await client.decision.coordinate({
  task: "Research and write comprehensive report",
  agents: [
    { role: "researcher", model: "gpt-4" },
    { role: "analyzer", model: "claude-3" },
    { role: "writer", model: "gpt-4" }
  ],
  workflow: "sequential"
});

console.log('Final Output:', result.output);
console.log('Agent Contributions:', result.agentOutputs);
console.log('Total Cost:', result.totalCost);

decision.optimize()

Analyze usage patterns and get recommendations for cost optimization.

Example

typescript
const optimization = await client.decision.optimize({
  timeframe: "last_30_days",
  goal: "reduce_cost"
});

console.log('Current Spend:', optimization.currentSpend);
console.log('Potential Savings:', optimization.potentialSavings);
console.log('Recommendations:', optimization.recommendations);

// Example recommendations:
// - Switch 60% of queries to GPT-3.5 (save $200/mo)
// - Enable caching for repeated queries (save $150/mo)
// - Use Claude for long context tasks (save $100/mo)

Routing Strategies

Cost-Optimized

Minimize costs while maintaining acceptable quality. Uses cheaper models when possible.

typescript
await client.decision.route({
  task: "Simple question answering",
  priority: "cost"
});

Quality-Optimized

Maximize output quality. Uses most capable models regardless of cost.

typescript
await client.decision.route({
  task: "Complex legal analysis",
  priority: "quality"
});

Speed-Optimized

Minimize latency. Uses fastest available models.

typescript
await client.decision.route({
  task: "Real-time chat response",
  priority: "speed"
});

Best Practices

  • • Use adaptive routing for cost optimization
  • • Set appropriate constraints for your use case
  • • Monitor routing decisions with analytics
  • • Use coordination for complex multi-step tasks
  • • Regularly review optimization recommendations
  • • Test different routing strategies in development